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rtificial intelligence (AI) techniques have recently 
emerged as the powerful and advancing frontier in 

power electronics and their impact in the next gen-
eration of power electronics appears to be tre-
mendous. The advent of AI has brought a chal-

lenge to the engineers specialized in power electronics which is 
already a complex, interdisciplinary and fast-moving technol-
ogy. The AI provides very powerful tools for design, simulation, 

control, estimation, fault diagnostics, and fault-tolerant con-
trol of power electronic systems, which are particularly 
important in modern smart grid and renewable energy sys-
tems (RESs) in addition to its applications in traditional power 
electronics and motor drives area. A smart or intelligent grid is 
basically an advanced electric power grid of tomorrow using 
state-of-the-art technologies in power electronics, power sys-
tems, computers, communications, information, AI and cyber 
that will improve the system availability, reliability, power 
quality, energy efficiency, and security with optimum resource 
utilization and economical electricity to the consumers.

Artificial Intelligence 
Techniques:  

How Can it Solve Problems 
in Power Electronics?

An advancing frontier

Digital Object Identifier 10.1109/MPEL.2020.3033607
Date of  current version: 16 December 2020

©SHUTTERSTOCK/EVERYTHING POSSIBLE

A

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on December 21,2020 at 14:05:19 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE POWER ELECTRONICS MAGAZINE z	December 2020

What is AI? AI basically deals with computer emulation 
of human thinking. A human brain with a biological nervous 
system has natural intelligence and ability to think, that is, 
to learn, reason and comprehend. The goal of AI is planting 
human intelligence in a computer so that the computer can 
think intelligently and solve problems like a human being. Can 
a computer really think and take intelligent decision? Compu-
tational intelligence has been a debatable subject for a long 
time. It is true that the intelligence of a computer is far infe-
rior to the natural intelligence of a human being. But it is also 
true that computer can help solving complex problems which 
are difficult to solve by traditional methods. The AI technol-
ogy has gone through evolution in the past several decades, 
and has been extensively applied in information management, 
space exploration, military systems, finance, industrial and 
power systems, etc. which also include power electronics and 
motor drives. AI techniques for applications in power elec-
tronics can be generally classified into four different areas. 
These are: Expert systems (ES), fuzzy logic (FL), artificial 
neural network (ANN or NNW), and genetic algorithm (GA) 
or evolutionary computation (EC). However, the concept of 
machine learning (ML) that involves the study of computer 
algorithms that improve automatically through experience has  
evolved over a long time. Lotfy Zadeh, the inventor of fuzzy 
logic, defines ES as “hard” or precise computing, whereas FL, 
NNW, and GA are defined as “soft” or approximate comput-
ing. The technology has gone through fast evolution in the 
past several decades. In the recent years, AI has been almost 
synonymous with the NNW applications. The potentiality of 
this area appears to be tremendous. In this article, the prin-
ciples of ES, FL and NNW will be briefly reviewed along with 
discussion of an example application in each area.

Expert System
The ES, also known as classical AI, is the forerunner of all 
the AI techniques. It is basically an intelligent computer pro-

gram that is designed to embed the expertise of a human 
being in a certain domain, such as power electronics. A 
power electronics engineer acquires the expertise by educa-
tion and training over a prolonged period of time. The objec-
tive of an ES is to replace a power electronics expert by the 
advanced computer-embedded program that is designed to 
solve the problem [1]. Figure 1 shows the basic elements of 
an ES with interconnection as follows:
■■ Knowledge Base
■■ Inference Engine
■■ User Interface
■■ Explanation Subsystem for user education.

The core of the ES is the knowledge base which consists of 
expert knowledge that is supported by database as shown. The 
expert knowledge basically consists of a matrix of IF …. THEN 
rules using Boolean variables which are similar to logical think-
ing of a human being to solve a problem. An example rule for 
fault-tolerant control of a converter-fed ac drive system may be

IF converter dc link voltage 200 V1  AND  
   ac line voltage 0=  AND  
   motor speed 0015 rpm2   
 THEN reduce motor speed by 20% by regenerative  
   braking.

The expert knowledge is acquired from the domain expert 
(i.e. a power electronics engineer) by a software expert 
defined as knowledge engineer. The inference engine is basi-
cally the controller or executive software of the ES that tests 
the rules of the knowledge base in sequence and tries to 
draw inferences or conclusions that are supplied to the user. 
The inference engine communicates with the user in a very 
user-friendly dialog in a natural language, such as English. 
Through the inference engine, the ES requests the parameter 
values of the rules from the user to draw conclusions, or 
solution of the problem. One very important function of the 
ES is the user education through the explanation subsystem. 
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FIG 1 ES block diagram showing the different elements and their interconnection.
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This subsystem responds during the problem solving by the 
HELP, WHY and HOW commands of the user. The ES user is 
usually a semi-skilled person and does not understand in 
depth the complexity of problem solving. The ES explains to 
the user the technical features of the problem with explana-
tory texts and figures when HELP command is used. The 
WHY command explains to the user why the ES is asking the 
relevant information from the user, and HOW command 
explains how the problem has been solved. Often, user edu-
cation is the sole purpose for designing the ES.

The structure of a knowledge base with the matrix of 
16 rules, for example, can be read as

 :   ,  X X Y Y Z A1Rule IF AND THEN1 1= = =  ........ (1)

 :   ,  X X Y Y Z B2Rule IF AND THEN2 2= = =  ........ (2)

 h

:   ,  X X Y Y Z P16Rule IF AND THEN4 4= = =  ...... (16)

where X, Y and Z are defined as the rule parameters, and ,X1  
,Y1  ,X2  ,Y2  etc. are the respective parameter values. The data 

base that supports the knowledge base embeds the parame-
ter values which can be in the form of data (logical, numeric, 
facts or statements). A rule has a conditional (premise or 
antecedent) part in the IF statement and the action (conse-
quent or conclusion) part in the THEN statement. The logical 
connectives can be AND, OR and NOT operations for drawing 
conclusion. A rule can be fired or executed if the conditional 
part is true (called forward chaining), and then the action part 
guided by the THEN statement is executed. In backward 
chaining, the system starts with the desired conclusion and 
then finds the rules that could have caused the conclusion. In 
a practical system, there can be large number of rules and the 
parameters with the values may also be large and complex. 
The knowledge base can be simple or adaptive in nature, 
depending on the system changes or technology advance-
ment. Knowledge can be defined as shallow or deep. Shallow 
knowledge base can be directly obtained from the present 
knowledge of the system. A deep knowledge can be derived 
by machine learning from the system model and simulation 
responses based on designer’s or researcher’s knowledge.

The ES knowledge is normally structured or represented 
in the form of a tree with the help of a number of frames. A 
frame consists of a cluster of characteristic rules and their 
associated parameters. The advantage of frame-based struc-
ture of knowledge base is the logical organization of a large 
amount of knowledge in the modular form. The root frame is 
the core of the knowledge base. It may have child frames and 
grandchild subframes. Each subframe can be considered as 
a subdomain of expert knowledge. Assume, for example, a 
customer wants to select a certain commercial drive product 
[2] from a vendor for a certain application with the consulta-
tion of an ES program. In this case, the root frame embeds the 
expertise of a general sales engineer. Consider that there are 
two child subframes which embed the application engineer’s 
expertise of cage type induction motors (IM) and PM synchro-
nous motors (PMSM), respectively. The user interfaces the 

root frame in the beginning, and based on the user dialog and 
then consultation with IM and PMSM drive child subframes, 
the IM drive appears to be the choice. Once the type of drive 
is selected, the details of the converter and the machine will 
be calculated by the ES based on the specifications supplied 
by the user. The iterations of computation can be done by the 
ES until the user is fully satisfied with the ratings and perfor-
mances of the drive. A grandchild subframe will then provide 
the auxiliary features of IM drive, such as price, delivery and 
installation considerations.

An ES SHELL is a software environment platform [3] for 
efficient and user-friendly development of ES program. The 
SHELL can interface with external programs, such as data 
base files, graphical files, simulation files, interface routines, 
and mathematical files. A limited amount of data, logical and 
arithmetic capabilities can be directly embedded in the ES 
program, but for large data, such as product catalog file, data-
base files should be constructed. For complex calculations, 
such as solving differential equations, the ES program can 
access external programs. Similarly, the SHELL can control 
and transfer data to and from simulation programs. A power-
ful feature of shell is that it can integrate pictures with the 
knowledge base which are compressed as files. Thus, a fully 
designed power electronic system can be the output of the ES 
in the form of a circuit schematic showing all the numerical 
values of the parameters. A number of ES shells are available 
to design an ES program. One example is PC Plus [3] devel-
oped by Texas Instruments. It uses PC SCHEME language 
which is a dialect of LISP language. The designer should have 
familiarity with PC SCHEME although English-like Abbrevi-
ated Rule Language (ARL) is used for fast development of the 
program. For time-critical real-time applications, C language 
should be used. If the program is resident in the SHELL, the 
developer can easily alter or update it, but program modifica-
tion is not possible in client computer environment.

Expert System Based Control of Smart Grid
In the past, ES has been applied extensively in many power 
electronic systems [1]. The applications include automated 
P-I tuning of drive, power electronic system fault diagnos-
tics, selection of commercial drive product, drive system 
configuration selection, design and simulation that generates 
real-time controller object code for a DSP, and control strat-
egy development of smart grid. As an example of ES applica-
tion, we will discuss briefly the preliminary control of smart 
grid based on ES [4]. Suffice to say that control and protec-
tion of a modern smart grid are extremely complex, particu-
larly if the grid is large. In the present status of the technol-
ogy, the control and protection strategy of future large smart 
grid is not yet well-defined.

As mentioned before, a smart grid is basically an advanced 
electric power grid using state-of-the-art technologies that 
will improve system availability, reliability, power quality, 
energy efficiency, and security with optimum resource utili-
zation and economical electricity to the consumers. Figure 2 
shows a simplified control block diagram of smart grid based 
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on ES. The grid incorporates a large segment of RES along 
with bulk power generation by fossil and nuclear power 
plants. There are bulk energy storage plants (mainly to sup-
port RES), HVDC systems, flexible ac transmission system 
(FACTS), VAR compensating static compensators (STAT-
COMs), and modular multilevel converters (MMCs), which 
are distributed strategically throughout the grid. The whole 
grid is segmented into a number of regions which are under 
the control of a centralized master controller, as indicated in 
the Figure 2. The master controller at the center of the Fig-
ure has an ES oriented knowledge base, where the rules are 
formulated on the basis of extensive a priori offline analysis, 
design and simulation of the whole system. This is a massive 
task that requires a large number of iterations. The ES rules 
usually have a large number of parameters with different 
values. The knowledge base can be updated continuously as 
more knowledge is gained about the system. A simple typical 
rule may have the structure as

IF photovoltaic station A output 20 kW1  AND  
   wind station D output ,0100 kW2   
 THEN trip circuit breaker M and assign  
   battery  storage  station D output 201 kW= .

The knowledge base can also incorporate fuzzy inference 
system (FIS) based rules which will be described later. The 
master controller has an operator interface on the left and a 
real-time simulator (RTS) interface on the right, and controls 
all the regional controllers are indicated in the Figure. All the 
regional controllers have local override in case of a problem 
with the master controller. The RTS is based on supercom-
puters which embeds the dynamic model of the whole grid 
including the power electronic systems that require very fast 
response. The virtual or simulated grid runs essentially inde-

pendently from the actual grid. The RTS helps the master 
controller to generate the command and control signals for 
the regional controllers based on real-time solution of the 
virtual grid. The RTS receives the whole system signals, 
whereas the regional controllers receive only the regional 
signals. A large number of grid signals can be obtained 
through system-wide PMUs (phasor measurement units). 
The signals may be sensor-based or sensorless. Redundant 
signals may be needed for unreliable signals.

The operator interface in the central control station is 
assisted with large display boards (not shown) that monitor 
all the key signals (such as system frequency, bus voltages, 
active and reactive power flow in lines, including the status 
of the system operation for information and assistance of the 
operators). Note that FL and NNW based controls can also be 
used within the elements of the smart grid system. The reli-
able operation of hardware and software of the controllers 
and the RTS are extremely important for reliable grid opera-
tion. For this reason, some redundancy in hardware and soft-
ware should be built in. The RTS can also be used for initial 
planning, analysis and design of the grid and to formulate 
optimum default control strategy with the predicted load-
ing, generation and energy storage capacity curves, including 
the planned outages of the equipment, but this discussion is 
beyond the scope of this article. Note that RTS can also be 
used to study future expansion of the grid.

Fuzzy Logic
FL, unlike Boolean logic, is multivalued, i.e., its value varies 
between 0 and 1. FL is used to solve problems that have 
fuzziness or uncertainty. The general methodology of rea-
soning in FL is also based on IF …. THEN rules like ES. A 
general rule in FL may read as
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FIG 2 Simplified control block diagram of smart grid based on ES.
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IF motor speed is high and its stator temperature is medium 
 THEN set the machine stator current low.

The fuzzy variables (underlined) in the rule are normally 
represented by membership functions (MFs). Figure 3 shows 
the general principle of Mamdani type fuzzy control system 
(defined as fuzzy inference system or FIS) using triangular 
MFs. Mamdani method is most commonly used in literature. 
Here, X, Y and Z are the fuzzy variables, where X and Y are 
the inputs and Z is the output. Each fuzzy variable is repre-
sented by three MFs, as indicated in the figure. The fuzzy vari-
ables can be unipolar or bipolar, and range of values of each is 
defined as a “universe of discourse”. In the FIS, there are three 
control rules as indicated in the figure which can be defined as

Rule 1:  IF X is negative small (NS) AND Y is zero (ZE) 
 THEN Z is positive small (PS)

Rule 2:  IF X is zero (ZE) AND Y is zero (ZE) 
 THEN Z is zero (ZE)

Rule 3:  IF X is zero (ZE) AND Y is positive small (PS) 
 THEN Z is negative small (NS).

For convenience, fuzzy variables are normally defined on a 
per unit (pu) basis. All the rules in FIS are normally summa-
rized as a rule matrix in the form of a table.

Because of the analogy, a FIS is often defined as fuzzy ES. 
The computations in FIS consist of the following five steps to 
determine the inference or conclusion

1) Fuzzification of the input crisp variables (X, Y, etc.);
2) Application of fuzzy operator (AND, OR, NOT) in the IF 

(or antecedent) part of the rule;
3) Implication from the antecedent to the consequent 

(THEN) part of the rule;
4) Aggregation of the consequents of the rules;
5) Defuzzification to convert the fuzzy output to crisp value.
All the three rules in the figure are shown in the consecutive 
horizontal rows with the input values of X 3=-  and 

. .Y 1 5=+  Since all the rules use the AND operator, the 
degree of fulfilment (DOFs) from the antecedent parts of the 
rules are calculated as ,0 6.DOF1 =  0 4DOF .2 =  and 

,0 4DOF .3 =  respectively. The corresponding fuzzy output 
MFs (shaded) are PS’, ZE’ and NS’, respectively from the 
consequent part of the rules. The total fuzzy output, as 
shown in the figure, is the aggregation of the consequents of 
the rules. The defuzzification calculates the center of the 
overlapped area (COA), where Z0  is the defuzzified or crisp 
output. Note that a practical FIS can have a large number of 
input and output variables and each variable may have a 
large number of MFs. A FIS can be designed with the help of 
Math Works Fuzzy Logic Toolbox [5].

Fuzzy Logic Control of Modern Wind Generation System
FL has been applied extensively in power electronic systems 
[1]. The applications include robust control of drives with 
parameter variation, P-I tuning of control system, system 
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FIG 3 Three-rule Mamdani type FIS showing the output defuzzification.
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nonlinearity compensation, control optimization based on 
online search, estimation of parameters, slip-gain control of 
induction motor drive, online diagnostics and fault-tolerant 
control, etc. In this section, fuzzy logic based modern wind 
generation system control will be discussed as an example.

Figure 4 shows a modern wind generation system [4] 
that uses a horizontal axis variable speed wind turbine, IPM 
synchronous generator and two-sided PWM converter sys-
tem. The machine is gearless to improve weight, efficiency, 
reliability, cost, and noise, although the machine has some 
cost and weight penalty for such a direct drive system. As a 
result, the generator cut-in speed is somewhat lower. The IPM 
machine (with NdFeB magnet) has high efficiency and arma-
ture reaction effect due to salient poles that permits stator 
flux programming for light-load efficiency optimization con-
trol. Both the converters are direct vector controlled with syn-
chronous current control and space vector PWM that permit 
fast response and harmonic-free machine and line currents 
further improving the drive efficiency. The generator uses 
stator flux -sW^ h  oriented vector control, as indicated in the 
figure. The active power P0^ h (for dc-link voltage vd  control) 
and reactive power Q0^ h sharing of the line-side converter are 
also indicated.

The wind generation system in Figure 4 uses three fuzzy 
controllers (FLC-1, FLC-2 and FLC-3)[1], as shown, with 
Mamdani-type FIS in all of them. The operation of the fuzzy 

controllers FLC-1 and FLC-2 is explained in the power out-
put curves of wind generation system in Figure 5 which gives 
output power P0^ h as function of generator speed r~^ h at 
different wind velocity .Vw^ h  The FLC-1 is an online search 
based maximum power point tracking (MPPT) (MPPT-1) 
control, where optimum turbine speed r~^ h is searched for 
maximum line power P0^ h at constant Vw^ h so that the tur-
bine operates at maximum aerodynamic efficiency. In a fuzzy 
MPPT-1 control, the inputs are power increment P0T  and the 
last increment/decrement of L rT~)  and the output is the com-
mand speed increment rT~)  (the details are not shown). The 
controller FLC-1 brings the operating point from A at speed 

r1~  to the maximum power point B at speed r2~  when work-
ing at constant wind velocity .Vw4  Then the controller FLC-2 
works to bring the operating point to C at the same speed. The 
FLC-2 operates on the same online search principle (MPPT-2) 
to set the optimum light-load flux command SW

)  as a func-
tion of torque command T e

)  for best light load generator effi-
ciency. If Vw  now increases from Vw4  to ,Vw2  the operating 
point jumps to D. Further operation of the fuzzy controllers 
will bring the operating point to F. The effect on decrease of 
Vw  is also indicated in the figure. Note that no information 
on wind velocity is needed in the fuzzy controllers. Evidently, 
the fuzzy controls are abandoned when the wind velocity 
changes. The online search-based algorithms are insensitive 
to plant parameter variation. The fuzzy P-I speed controller 

FIG 4 Fuzzy control of modern wind generation system with IPM synchronous generator.
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(FLC-3) gives robust and deadbeat speed control for wind 
vortex and pulsating turbine torque. The fuzzy control has 
the advantages that it is adaptive in nature giving fast conver-
gence and accurate signal information is not needed.

Neural Networks
Among all the AI techniques, NNWs are most important, and 
in fact, modern AI technology is synonymous with NNW 
techniques and their applications. It is a generic form of AI, 
and therefore more powerful. The invention of NNW is 
often considered as significant as the invention of transis-
tor. A NNW is basically interconnection of artificial neu-
rons [1], [4], [7], [8] that emulate the characteristics of bio-
logical neuron in our brain nervous system as indicated in 
Figure  6(a). The model of artificial neuron that closely 
matches with biological neuron is shown in Figure 6(b). 
Basically, it has op-amp summer-like structure. The input 
signals ,X1  ,X2  etc. which may be continuous variables or 
discrete pulses, flow through a gain or weight (called syn-
aptic weight or connection strength) that can be positive or 
negative, integer or noninteger.

The summing node accumulates all the input-weighted sig-
nals, adds to the weighted bias signal b and passes to the output 
through the nonlinear (or linear) activation or transfer function 
(TF), as shown in the figure. The activation 
function may be linear bipolar, threshold, sig-
num, Gaussian, sigmoidal (or log-sigmoid), 
or hyperbolic-tan (or tan-sigmoid) [1]. The 
magnitude of these functions varies between 
0 and 1, or 1-  to .1+  The nonlinearity of 
TF gives nonlinear input-output mapping 
property of NNW. The NNW can have many 
feedforward and feedback (called recurrent) 
topologies, but the most commonly used 
feedforward topology for applications in 
power electronics is shown in Figure 7.

Each circle of the NNW represents a neu-
ron with its TF and the dot represents the 
weight for interconnection between the neu-
rons. The external bias source generally con-
nects to all the neurons, but is shown only 
for the middle layer for simplicity. The net-
work has three layers of neurons: input layer, 
hidden layer and output layer, with three, 
five and two neurons, respectively. Often, it 
is called 3-5-2 NNW. The input signals (logi-
cal, continuous or discrete, unidirectional 
or bidirectional) are processed through the 
NNW and appear at the output. Usually, the 
signals are processed in normalized form 
with input scaling and output descaling, 
as indicated. The network has associated 
memory or pattern recognition property due 
to the distributed intelligence of the neurons 
contributed by the synaptic weights of the 
neurons. This means that when one signal 

pattern is impressed at the input a desired pattern appears at 
the output. This is basically modeling of human intelligence 
with the help of NNW. This modeling is possible if the NNW 
is trained adequately with example input-output data patterns 
(called supervised training) through a training software. Fig-
ure 7 indicates the commonly used training algorithm, called 
backpropagation training. Basically, for a given input data 
pattern, the neuron weights are adjusted in the backward 
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direction so that the output data pattern matches with the de -
sired output pattern (pattern matching or pattern recognition) [9].

Neural Network based Fault Pattern Identification 
of Smart Grid Subsystem
The applications of NNW in power electronics include PWM 
(SHE and SVM) implementation, multi-dimensional look-up 
table generation, waveform processing, delayless filtering, 
estimation for distorted waves, FFT analysis, adaptive con-
trol of drives, vector control, feedback signal estimation of 
drives, on-line system diagnostics, fault-tolerant control, 
neuro-fuzzy based vector and DTC control, system health 
monitoring, etc. We will discuss here briefly the technique of 
fault identification of smart grid subsystem by neural map-
ping technique [4].

This application is concerned with identification of fault 
and power quality problems in a smart grid subsystem (or 
microgrid) as indicted in Figure 8. Three-phase voltage and 
current wave signals of a power system give the footprint of 
different types of faults in a system. The voltage and current 
wave signals are sensed and their space vectors are com-
puted. These are then analyzed to identify different types of 
faults in the system. For example, in a healthy harmonic-free 
balanced system with the rated sinusoidal voltage and current 

waves, the space vectors are circles of fixed diameters. For 
overvoltage and overcurrent conditions, the respective circle 
diameters will have proportional increase. Similarly, for 
decrease in voltage and current, the respective circle diam-
eter will decrease proportionally. Therefore, the quantitative 
deviations from the rated values can be determined by mea-
surement of the circle diameter. For system imbalance or 
harmonics in the waves, the space vectors will be distorted 
characteristically. For every abnormal condition of the sys-
tem, the corresponding space vectors will have some dis-
tortion, the signature of which can be analyzed to identify 
the fault or any abnormal condition quantitively. The space 
vector patterns are displayed on optical grids with m n#  
matrix, and the characteristic logic signals 1’s (shaded) and 
0’s (unshaded) can be generated similar to optical character 
recognition (OCR) system used by NNW [10].These matrices 
of the characteristic logic signals are impressed at the input 
of a feedforward neural network, as shown in Figure 8. The 
NNW is initially trained with example data patterns by back-
propagation technique to identify the corresponding fault or 
any abnormal condition in the system. Some of the faults are 
indicated in the figure. Based on these signals, the network 
can generate warning signals, be protected by selective trip-
ping or fault-tolerant system control can be designed.
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FIG 7 Feedforward NNW structure (3-5-2) showing backpropagation training.
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Summary
The advent of powerful AI techniques has opened a new 
frontier for advanced control and protection of power elec-
tronics/power systems. In this article, a brief but comprehen-
sive review of different elements of AI are given. An example 
application in each area of AI is given briefly. Selecting a par-
ticular AI technique depends on the problem complexity. 
The ES can be simple software if the problem is simple. 
However, it can be complex for a complex problem, such as 
smart grid control. Similarly, FL applications can be simple 
or complex and can be solved either by fuzzy software or 
NNW technique. NNW is the most generic AI technique and 
is used for solving complex nonlinear mapping problems.
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FIG 8 Fault and abnormal condition identification of micro grid using NNW-based mapping.
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